Advanced Trading Strategies

Quant-driven approaches with key mathematical formulas

Momentum Stat-Arb Vol-Arb Gamma Machine Learning

1. Trend Following Strategies

We analyze 10–20 years of price data to uncover persistent market direction using adaptive, non‑linear models such as Genetic Algorithms, SVMs, and ANNs.

Signal-to-noise via information ratio: $$\mathrm{IR} = \frac{\mathbb{E}[R_p - R_b]}{\sqrt{\operatorname{Var}(R_p - R_b)}}$$

2. Mean Reversion Strategies (Statistical Arbitrage)

We construct market‑neutral long/short spreads from cointegrated instruments and size trades by mean‑reversion speed.

Ornstein–Uhlenbeck (OU) process for spread $X_t$: $$\mathrm{d}X_t = \kappa(\mu - X_t)\,\mathrm{d}t + \sigma\,\mathrm{d}W_t$$
Half‑life of mean reversion: $$t_{1/2} = \frac{\ln 2}{\kappa}$$
Discrete‑time estimation via AR(1): $$\Delta X_t = X_t - X_{t-1} = \phi - \kappa X_{t-1} + \varepsilon_t \;\Rightarrow\; \hat{\kappa} = -\widehat{\text{slope}}\;.$$

3. Volatility Arbitrage Strategies

Exploit gaps between implied volatility (IV) and realized volatility (RV) while managing Greeks in a delta‑neutral book.

Realized variance (close‑to‑close): $$\mathrm{RV} = \sum_{t=1}^{T} r_t^2, \quad r_t = \ln\!\left(\frac{P_t}{P_{t-1}}\right)$$
Delta‑neutrality and Greeks: $$\sum_i w_i\,\Delta_i = 0,\qquad \Gamma = \frac{\partial \Delta}{\partial S},\qquad \Theta = \frac{\partial V}{\partial t},\qquad \text{Vega} = \frac{\partial V}{\partial \sigma}$$
First‑order P&L approximation for an options book $V$: $$\mathrm{d}V \approx \Delta\,\mathrm{d}S + \tfrac{1}{2}\,\Gamma\,(\mathrm{d}S)^2 + \text{Vega}\,\mathrm{d}\sigma + \Theta\,\mathrm{d}t$$

4. Gamma Scalping Strategies

Harvest convexity from positive gamma while re‑hedging delta as price moves.

With frequent re‑hedging of $\Delta$, expected scalping P&L from convexity over small horizon: $$\mathbb{E}[\mathrm{P\&L}] \approx \tfrac{1}{2}\,\Gamma\,\mathbb{E}[(\Delta S)^2] - \text{(financing/theta costs)}$$

5. Machine Learning‑Based Strategies

Supervised DNNs for direction classification and unsupervised clustering for regime discovery.

Binary cross‑entropy (logistic head): $$\mathcal{L}(\theta) = -\big[y\,\log p_\theta(\text{up}|\mathbf{x}) + (1-y)\,\log (1-p_\theta(\text{up}|\mathbf{x}))\big]$$
K‑Means objective: $$\min_{\{\mu_k\}} \sum_{k=1}^{K} \sum_{\mathbf{x}_i \in C_k} \lVert \mathbf{x}_i - \mu_k \rVert^2$$